MMP-9/Gelatinase B Is a Key Regulator of Growth Plate Angiogenesis and Apoptosis of Hypertrophic Chondrocytes

نویسندگان

  • Thiennu H Vu
  • J.Michael Shipley
  • Gabriele Bergers
  • Joel E Berger
  • Jill A Helms
  • Douglas Hanahan
  • Steven D Shapiro
  • Robert M Senior
  • Zena Werb
چکیده

Homozygous mice with a null mutation in the MMP-9/gelatinase B gene exhibit an abnormal pattern of skeletal growth plate vascularization and ossification. Although hypertrophic chondrocytes develop normally, apoptosis, vascularization, and ossification are delayed, resulting in progressive lengthening of the growth plate to about eight times normal. After 3 weeks postnatal, aberrant apoptosis, vascularization, and ossification compensate to remodel the enlarged growth plate and ultimately produce an axial skeleton of normal appearance. Transplantation of wild-type bone marrow cells rescues vascularization and ossification in gelatinase B-null growth plates, indicating that these processes are mediated by gelatinase B-expressing cells of bone marrow origin, designated chondroclasts. Growth plates from gelatinase B-null mice in culture show a delayed release of an angiogenic activator, establishing a role for this proteinase in controlling angiogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation.

Endochondral bone formation is characterized by the progressive replacement of a cartilage anlagen by bone at the growth plate with a tight balance between the rates of chondrocyte proliferation, differentiation, and cell death. Deficiency of matrix metalloproteinase-9 (MMP-9) leads to an accumulation of late hypertrophic chondrocytes. We found that galectin-3, an in vitro substrate of MMP-9, a...

متن کامل

Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression

Since its original identification as a leukocyte gelatinase/type V collagenase and tumour type IV collagenase, gelatinase B/matrix metalloproteinase (MMP)-9 is now recognised as playing a central role in many aspects of tumour progression. In this review, we relate current concepts concerning the many ways in which gelatinase B/MMP-9 influences tumour biology. Following a brief outline of the g...

متن کامل

Dev127142 348..355

Extracellular phosphate plays a key role in growth plate maturation by inducing Erk1/2 (Mapk3/1) phosphorylation, leading to hypertrophic chondrocyte apoptosis. The Raf kinases induce Mek1/2 (Map2k1/2) and Erk1/2 phosphorylation; however, a role for Raf kinases in endochondral bone formation has not been identified. Ablation of both A-Raf (Araf) and B-Raf (Braf) in chondrocytes does not alter g...

متن کامل

Expression of matrix metalloproteinases during vascularization and ossification of normal and impaired avian growth plate.

Enzymes of the matrix metalloproteinase (MMP) family regulate angiogenesis and are involved in the endochondral ossification process. Tibial dyschondroplasia (TD) and rickets are 2 disorders associated with impairments in this process, mainly in the vascularization of the avian growth plate. In this paper, we induced TD and rickets and studied the expression patterns of 4 members of the MMP fam...

متن کامل

MMP-9/gelatinase B is a gene product of human adult articular chondrocytes and increased in osteoarthritic cartilage.

OBJECTIVE Collagen fibril degeneration involves initially the cleavage within the triple helix by the collagenases 1 (MMP-1) and 3 (MMP-13), but then mainly involves also the gelatinases A (MMP-2) and B (MMP-9). The objective of this study was to determine the quantitative expression levels as well as the distribution in normal and osteoarthritic cartilage of gelatinase B and in cultured articu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 93  شماره 

صفحات  -

تاریخ انتشار 1998